GOA BOARD OF SECONDARY AND HIGHER SECONDARY EDUCATION
 FIRST INTERNAL TEST

MODEL PAPER (2022-2023)
STD : X
MAX MARK S: 20
SUBJECT : MATHEMATICS (E) : LEVEL 2
Q.1.A) Select and write the correct alternative from those given below.

If $9 x-7 y=15$ and $7 x-9 y=13$, then the value of $x+y$ is:
(a) -3
(b) -1
(c) 1
(d) 3
B) Find the solution of ANY ONE of the following pair of linear equations:
i) $3 x+4 y=18$ and $7 x-3 y=5$
(By Elimination method)
ii) $x-y=7$ and $2 x+7 y=-13 \quad$ (By Substitution method)
C) Divide the polynomial ($2 \boldsymbol{x}^{3}-5 \boldsymbol{x}^{2}-3 \boldsymbol{x}+7$) by ($2 \boldsymbol{x}-3$) and find the quotient (3) and remainder. Also, express the dividend in the form:

$$
\text { " Dividend = divisor } \times \text { quotient + remainder" }
$$

D) Find the solution of the following pair of linear equations graphically :

$$
x-y=5 \quad \text { and } \quad 2 x+y=7
$$

Rewrite and complete the following tables.
(Plot at least 3 points for each line on a graph paper)
$x-y=5$

x					
y					x
:---		y			
:---	:---	:---	:---		

Q.2.A) Select and write the correct alternative from those given below.

The distance of the point $\mathrm{P}(12,-5)$ from the origin is :
(a) 7 unit
(b) 17 units
(c) 14 units
(d) 13 units
B) Attempt the following.
i) If the sum of the zeroes of the polynomial $3 x^{2}-2 k x+6$ is 3 , then find the value of k.
ii) Find a quadratic polynomial in variable x whose zeroes are $\sqrt{5}$ and $-\sqrt{5}$.
C) Given: Point O is the centre of the Circle . Two tangent segments $P A$ and $P B$ are drawn from an external point P to the Circle at A and B respectively.

Prove that: $\mathrm{PA}=\mathrm{PB}$

D) i) Find the area of $\triangle A B C$ formed by joining the points $A(10,-6), B(2,5)$ and $C(-1,3)$.
ii) Find the coordinates of the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ which divides the line segment joining the points $A(5,-2)$ and $B(9,6)$ internally in the ratio $3: 1$.

